Dry Clutch Modeling, Estimation, and Control

نویسنده

  • Andreas Myklebust
چکیده

Increasing demands on comfort, performance, and fuel efficiency in vehicles lead to more complex transmission solutions. One such solution is the Automated Manual Transmission (AMT). It works just like an ordinary manual transmission but the clutch and the gear selection are computer controlled. In this way high efficiency can be accomplished with increased comfort and performance. To be able to control and fully utilize an AMT, it is of great importance to have knowledge about how torque is transmitted in the clutch. The transmitted torque in a slipping dry clutch is therefore studied in a series of experiments with Heavy Duty Trucks (HDT). It is shown that material expansion with temperature can explain torque variations up to 900 Nm for the same clutch actuator position. A dynamic clutch temperature model that can describe the torque variations is developed. The dynamic model is validated in experiments, and shown to reduce the error in transmitted torque from 7 % to 3 % of the maximum engine torque compared to a static model. Since all modeling, parameter estimation, and validation are performed with production HDTs, i.e. production sensors only, it is straightforward to implement the model in a production HDT following the presented methodology. The clutch model is extended with lock-up/break-a-part dynamics and an extra state describing wear. The former is done using a state machine and the latter uses a slow random walk for a parameter corresponding to the thickness of the clutch disc. Two observability analyses are made: one with production sensors, and one with a torque sensor in addition to the production sensors. The analyses show that, in both cases, the temperature states and the wear state are observable both during slipping of the clutch and when it is fully closed. The latter is possible since a sensor measures the actuator position. The unknown offset in the torque sensor is possible to observe (at all times) if the model is further augmented with engine inertia dynamics. An Extended Kalman Filter (EKF) is developed and evaluated on measurement data for both cases. The estimated states converge from poor initial values, enabling prediction of the translation of the torque transmissibility curve and sensor offset. The computational complexity of the EKF is low and it is thus suitable for real-time applications. The clutch model is also integrated into a driveline model capable of capturing vehicle shuffle (longitudinal speed oscillations) and engine torque fluctuations. Parameters are estimated to fit an HDT and the complete model shows good agreement with data. It is used to show that the effect of thermal expansion, even for moderate temperatures, is significant in clutch control applications. One such application is micro-slip control. A control structure has been made and the basic components are a reference-slip calculator, an LQ controller and an EKF that can compensate for the thermal dynamics of the clutch. The controller isolates the driveline from the engine oscillations without dissipating more heat than the clutch can handle. An analysis shows a noticeable fuel consumption increase. Nonetheless, the real benefits of micro-slip control will only be evident when combined with other cost-reducing changes in the powertrain. The feasibility of a micro-slip control system for a dry clutch HDT has been proven.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real World Modeling and Nonlinear Control of an Electrohydraulic Driven Clutch

In this paper, a complete model of an electro hydraulic driven dry clutch along with its performance evaluation has elucidated. Through precision modeling, a complete nonlinear physical and full order sketch of clutch has drawn. Ultimate nonlinearities existent in the system prohibits it from being controlled by conventional linear control algorithms and to compensate the behavior of the sy...

متن کامل

Gearshift control for dry dual-clutch transmissions

In this paper a smooth control algorithm for gear shifting is proposed for improving longitudinal dynamic performance during dry dual-clutch engagements while shifting up or down takes place based on measurements of engine speed and clutch speed, and on estimation of the dual-clutch engaging torque. Simulation effort is made by Matlab/Simulink for transient responses of the overall propulsion s...

متن کامل

Modeling and Estimation for Dry Clutch Control

Increasing demands on comfort, performance, and fuel efficiency in vehicles lead to more complex transmission solutions. One such solution is the Automated Manual Transmission (AMT). It works just like an ordinary manual transmission but the clutch and gear selection are computer controlled. In this way high efficiency can be accomplished with increased comfort and performance. To be able to co...

متن کامل

Real World Modeling and Nonlinear Control of an Electrohydraulic Driven Clutch

In this paper, a complete model of an electro hydraulic driven dry clutch along with its performance evaluation has elucidated. Through precision modeling, a complete nonlinear physical and full order sketch of clutch has drawn. Ultimate nonlinearities existent in the system prohibits it from being controlled by conventional linear control algorithms and to compensate the behavior of the system...

متن کامل

The Effect of Thermal Expansion in a Dry Clutch on Launch Control ?

A dry clutch model with thermal dynamics is added to a driveline model of a heavyduty truck equipped with an automated manual transmission. The model captures driveline oscillations and can be used to simulate how different clutch-control strategies affect vehicle performance, drivability and comfort. Parameters are estimated to fit a heavy-duty truck and the complete model is validated with re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014